463 research outputs found

    A Stochastic Game Theoretical Model for Cyber Security

    Get PDF
    The resiliency of systems integrated through cyber networks is of utmost importance due to the reliance on these systems for critical services such as industrial control systems, nuclear production, and military weapons systems. Current research in cyber resiliency remains largely limited to methodologies utilizing a singular technique that is predominantly theoretical with limited examples given. This research uses notional data in presenting a novel approach to cyber system analysis and network resource allocation by leveraging multiple techniques including game theory, stochastic processes, and mathematical programming. An operational network security problem consisting of 20 tactical normal form games provides an assessment of the resiliency of a cyber defender\u27s network by leveraging the solutions of each tactical game to inform transitional probabilities of a discrete-time Markov chain over an attacker- defender state space. Furthermore, the Markov chain provides an assessment of the conditional path through the operational problem with an expected cost of damage to the defender network. The solutions of the tactical games and, in turn the operational problem, are utilized to determine the effects and risks of projected network improvement resource allocation decisions via an integer program. These results can be used to inform network analysts of the resiliency of their network while providing recommendations and requirements for improving their network resiliency posture against potential malicious external actors

    Nonparties to Employment Discrimination Consent Decrees May Attack, in a Collateral Lawsuit, Decisions Made Pursuant to the Decrees.

    Get PDF
    In Martin v. Wilks, the United States Supreme Court held nonparties to employment discrimination consent decrees may attack, in a collateral lawsuit, decisions made pursuant to the decrees. A consent decree is a voluntary judgment between parties which facilitates settlement of litigation by providing one party with equitable relief. Courts retain jurisdiction over parties to a consent decree, and they can issue contempt orders to parties violating the terms of the decree. Unlike judgments, the parties cannot challenge the consent decrees, except in limited circumstances. Recently, federal courts have widened the scope of preclusion law by defining the term “claim” broadly. In Martin v. Wilks, the Court allowed employees who were not parties to employment discrimination consent decrees to contest an employment decision made pursuant to the decrees. The majority favored permissive intervention, rejected efficiency and consistency arguments favoring the collateral attack bar, and dismissed policies advocating voluntary settlement of title VII claims. The majority properly held Wilks’ reverse discrimination claims should be litigated because nonparties should not be precluded from litigation except under limited circumstances. Additionally, the majority correctly remanded Wilks’ claim to the district court to adjudicate the legality of the consent decree and properly overruled the doctrine of impermissible collateral attack. If stability, uniformity, and finality are indeed the foundations of justice, then collateral lawsuits which result in different outcomes destroy these foundations and lead to injustice. If a system of mandatory intervention is indeed the desired result, then Congress, not the courts, should rewrite the rules

    CO2 Targets, Trajectories and Trends for International Shipping

    Get PDF
    The Shipping in Changing Climates (SCC) project connects the latest climate change science with knowledge, understanding and models of the shipping sector in a whole systems approach. It seeks to explore the potential to cut CO2 through the use of technical and operational changes in shipping and to understand how the sector might transition to a more resilient and low-carbon future; it also seeks to explore different climate change scenarios and related food and fuel security issues to gain an understanding of the direct and indirect impacts of climate change on the shipping sector. These scenarios can be used to build evidence and understanding around the range of potential future directions that the shipping industry may take. The RCUK Energy funded project brings together researchers from UCL (Energy Institute, Mechanical Engineering and Laws), Manchester, Southampton, Newcastle and Strathclyde, in close collaboration with a core industry stakeholder group of Shell, Lloyd’s Register, Rolls Royce, BMT and Maritime Strategies International, but drawing on the expertise and connections of over 35 companies and organisations worldwide. This paper is non-peer- reviewed and represents the collective opinions of the authors and should not be assumed to represent the views of all the researchers across the project or the project’s industry partners and their organisations

    Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism

    Get PDF
    The sequences of the 16S rRNA and haloalkane dehalogenase (dhaA) genes of five gram-positive haloalkane-utilizing bacteria isolated from contaminated sites in Europe, Japan, and the United States and of the archetypal haloalkane-degrading bacterium Rhodococcus sp. strain NCIMB13064 were compared. The 16S rRNA gene sequences showed less than 1% sequence divergence, and all haloalkane degraders clearly belonged to the genus Rhodococcus. All strains shared a completely conserved dhaA gene, suggesting that the dhaA genes were recently derived from a common ancestor. The genetic organization of the dhaA gene region in each of the haloalkane degraders was examined by hybridization analysis and DNA sequencing. Three different groups could be defined on the basis of the extent of the conserved dhaA segment. The minimal structure present in all strains consisted of a conserved region of 12.5 kb, which included the haloalkane-degradative gene cluster that was previously found in strain NCIMB13064. Plasmids of different sizes were found in all strains. Southern hybridization analysis with a dhaA gene probe suggested that all haloalkane degraders carry the dhaA gene region both on the chromosome and on a plasmid (70 to 100 kb). This suggests that an ancestral plasmid was transferred between these Rhodococcus strains and subsequently has undergone insertions or deletions. In addition, transposition events and/or plasmid integration may be responsible for positioning the dhaA gene region on the chromosome. The data suggest that the haloalkane dehalogenase gene regions of these gram-positive haloalkane-utilizing bacteria are composed of a single catabolic gene cluster that was recently distributed world-wide

    Growth of a vortex polycrystal in type II superconductors

    Get PDF
    We discuss the formation of a vortex polycrystal in type II superconductors from the competition between pinning and elastic forces. We compute the elastic energy of a deformed grain boundary, that is strongly non-local, and obtain the depinning stress for weak and strong pinning. Our estimates for the grain size dependence on the magnetic field strength are in good agreement with previous experiments on NbMo. Finally, we discuss the effect of thermal noise on grain growth.Comment: 4 pages, 2 figure

    Low-frequency dynamics of disordered XY spin chains and pinned density waves: from localized spin waves to soliton tunneling

    Full text link
    A long-standing problem of the low-energy dynamics of a disordered XY spin chain is re-examined. The case of a rigid chain is studied where the quantum effects can be treated quasiclassically. It is shown that as the frequency decreases, the relevant excitations change from localized spin waves to two-level systems to soliton-antisoliton pairs. The linear-response correlation functions are calculated. The results apply to other periodic glassy systems such as pinned density waves, planar vortex lattices, stripes, and disordered Luttinger liquids.Comment: (v2) Major improvements in presentation style. One figure added (v3) Another minor chang

    Integrating Suspended Sediment Flux in Large Alluvial River Channels: Application of a Synoptic Rouse‐Based Model to the Irrawaddy and Salween Rivers

    Get PDF
    A large portion of freshwater and sediment is exported to the ocean by a small number of major rivers. Many of these megarivers are subject to substantial anthropogenic pressures, which are having a major impact on water and sediment delivery to deltaic ecosystems. Due to hydrodynamic sorting, sediment grain size and composition vary strongly with depth and across the channel in large rivers, complicating flux quantification. To account for this, we modified a semi‐empirical Rouse model, synoptically predicting sediment concentration, grain‐size distribution, and organic carbon (%OC) concentration with depth and across the river channel. Using suspended sediment depth samples and flow velocity data, we applied this model to calculate sediment fluxes of the Irrawaddy (Ayeyarwady) and the Salween (Thanlwin), the last two free‐flowing megarivers in Southeast Asia. Deriving sediment‐discharge rating curves, we calculated an annual sediment flux of urn:x-wiley:jgrf:media:jgrf21236:jgrf21236-math-0001 Mt/year for the Irrawaddy and urn:x-wiley:jgrf:media:jgrf21236:jgrf21236-math-0002 Mt/year for the Salween, together exporting 46% as much sediment as the Ganges‐Brahmaputra system. The mean flux‐weighted sediment exported by the Irrawaddy is significantly coarser (D84 = 193 ± 13 ÎŒm) and OC‐poorer (0.29 ± 0.08 wt%) compared to the Salween (112 ± 27 ÎŒm and 0.59 ± 0.16 wt%, respectively). Both rivers export similar amounts of particulate organic carbon, with a total of urn:x-wiley:jgrf:media:jgrf21236:jgrf21236-math-0003 Mt C/year, 53% as much as the Ganges‐Brahmaputra. These results underline the global significance of the Irrawaddy and Salween rivers and warrant continued monitoring of their sediment flux, given the increasing anthropogenic pressures on these river basins

    Dynamical response of a pinned two-dimensional Wigner crystal

    Full text link
    We re-examine a long-standing problem of a finite-frequency conductivity of a weakly pinned two-dimensional classical Wigner crystal. In this system an inhomogeneously broadened absorption line (pinning mode) centered at disorder and magnetic field dependent frequency ωp\omega_p is known to appear. We show that the relative linewidth Δωp/ωp\Delta \omega_p / \omega_p of the pinning mode is of the order of one in weak magnetic fields, exhibits a power-law decrease in intermediate fields, and eventually saturates at a small value in strong magnetic fields. The linewidth narrowing is due to a peculiar mechanism of mixing between the stiffer longitudinal and the softer transverse components of the collective excitations. The width of the high-field resonance proves to be related to the density of states in the low-frequency tail of the zero-field phonon spectrum. We find a qualitative agreement with recent experiments and point out differences from the previous theoretical work on the subject.Comment: 19 pages, 11 figures. Supersedes cond-mat/990424

    Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106

    Get PDF
    Leaf hairs (trichomes) of Arabidopsis (Arabidopsis thaliana) have been extensively used as a model to address general questions in cell and developmental biology. Here, we lay the foundation for a systems-level understanding of the biology of this model cell type by performing genome-wide gene expression analyses. We have identified 3,231 genes that are up-regulated in mature trichomes relative to leaves without trichomes, and we compared wild-type trichomes with two mutants, glabra3 and triptychon, that affect trichome morphology and physiology in contrasting ways. We found that cell wall-related transcripts were particularly overrepresented in trichomes, consistent with their highly elaborated structure. In addition, trichome expression maps revealed high activities of anthocyanin, flavonoid, and glucosinolate pathways, indicative of the roles of trichomes in the biosynthesis of secondary compounds and defense. Interspecies comparisons revealed that Arabidopsis trichomes share many expressed genes with cotton (Gossypium hirsutum) fibers, making them an attractive model to study industrially important fibers. In addition to identifying physiological processes involved in the development of a specific cell type, we also demonstrated the utility of transcript profiling for identifying and analyzing regulatory gene function. One of the genes that are differentially expressed in fibers is the MYB transcription factor GhMYB25. A combination of transcript profiling and map-based cloning revealed that the NOECK gene of Arabidopsis encodes AtMYB106, a MIXTA-like transcription factor and homolog of cotton GhMYB25. However, in contrast to Antirrhinum, in which MIXTA promotes epidermal cell outgrowth, AtMYB106 appears to function as a repressor of cell outgrowth in Arabidopsis
    • 

    corecore